Material Processing with Ultrashort-pulsed Lasers
نویسندگان
چکیده
منابع مشابه
On the physics of material processing with femtosecond lasers
Ultrashort pulsed laser ablation of dielectrics has been investigated using ex-situ morphological examinations in combination with in-situ time-of-flight mass spectrometry of the ablated species. Analysis of the energy spectrum of the ablation products provides a wealth of information on the processes occurring during femtosecond laser ablation of materials. The presentation will focus on the c...
متن کاملUltrashort ultraviolet free-electron lasers.
In this work we combine elements of chirped pulse amplification (CPA) techniques, now familiar in solid-state lasers, with an amplifier based upon a seeded free-electron laser (FEL). The resulting device would produce amplified pulses of unprecedented brevity at wavelengths shorter than can be currently obtained by any tunable laser system. We use a subharmonically seeded FEL to illustrate the ...
متن کاملGlass Processing Using Microsecond, Nanosecond and Femtosecond Pulsed Lasers
Laser processing of glass components is of significant commercial interest for the optoelectronics and telecommunications industries. In this paper, we present laser processing techniques using microsecond, nanosecond, and femtosecond lasers for machining of glass. Surface structures, mainly groove geometries, are generated with a diode-pumped solid-state nanosecond pulsed UV laser operating at...
متن کاملPolaritonic materials fabricated and tested with ultrashort-pulse lasers
Using femtosecond laser machining, we have fabricated photonic bandgap materials that influence propagation of phonon-polaritons in ferroelectric crystals. Broadband polaritons were generated with impulsive stimulated Raman scattering (ISRS) using an ultrashort laser pulse, and the spatial and temporal evolution of the polaritons were imaged as they propagated through the fabricated structures ...
متن کاملUltrashort Pulse Lasers for Hard Tissue Ablation
To date, lasers have not succeeded in replacing mechanical tools in many hard tissue applications. Slow material removal rates and unacceptable collateral damage has prevented such a successful transition. Ultrashort pulses (<10 ps) have been shown to generate little thermal or mechanical damage. Recent developments now enable such short-pulse/high-energy laser systems to operate at high pulse ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Laser Technik Journal
سال: 2014
ISSN: 1613-7728
DOI: 10.1002/latj.201400027